The Internet of Things (IoT, also Cloud of Things or CoT) refers to the interconnection of uniquely identifiable embedded computing like devices within the existing Internet infrastructure. The Internet of Things is a scenario in which objects, animals or people are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. IoT has evolved from the convergence of wireless technologies, micro-electromechanical systems (MEMS) and the Internet. The creativity of this new era is boundless, with amazing potential to improve our lives.
Here are the six main attributes that make "things" a part of the Internet Of Things, or IoT:
- Sensors: IoT devices and systems include sensors that track and measure activity in the world. One example is Smartthings' open-and-close sensors that detect whether or not a drawer, window, or door in your home is open or closed.
- Connectivity: Internet connectivity is either contained in the item itself, or a connected hub, smartphone, or base station. If it's the latter, then the base station will likely be collecting data from an array of sensor-laden objects, and relaying data to the cloud and back.
- Processors: Just like any computing device, IoT devices will contain some computing power "under the hood," if only to be able to parse incoming data and transmit it.
These characteristics all apply to today's smartphones, of course, but many IoT devices will also need to be equipped with several special features to be truly useful. These will differentiate IoT devices, particularly remote ones, from today's smartphones. - Energy-efficiency: Many devices in the IoT may be difficult, costly, or dangerous to access for charging or battery replacement. One may even think of the Mars Curiosity Rover as an example of such a device. Therefore, they may need to be able to operate for a year or more unattended using a conservative amount of energy or be able to wake up only periodically to relay data.
- Cost-effectiveness: Objects that contain sensors may need to be distributed broadly to be useful, as in the case of sensors in food products in supermarkets that would indicate if an item has spoiled. These would need to be relatively inexpensive to purchase and deploy.
- Quality and reliability: Some IoT devices will need to operate in harsh environments outdoors and for extended periods of time.
- Security: IoT devices may need to relay sensitive or regulated information such as health-related data, so data security will be critical.
Internet Of Things explained by Arlen Nipper.
Arlen Nipper has been designing embedded computer hardware and software for 33 years. Arlen graduated from Oklahoma State University and worked in the oil patch for 10 years learning tons of useful stuff about "how things work" in the real world.