Featured post

Top 5 books to refer for a VHDL beginner

VHDL (VHSIC-HDL, Very High-Speed Integrated Circuit Hardware Description Language) is a hardware description language used in electronic des...

Sunday, 11 September 2016

64 core processor from Chinese chip maker Phytium

While the world awaits the AMD K12 and Qualcomm Hydra ARM server chips to join the ranks of the Applied Micro X-Gene and Cavium ThunderX processors already in the market, it could be upstart Chinese chip maker Phytium Technology that gets a brawny chip into the field first and also gets traction among actual datacenter server customers, not just tire kickers.

Phytium Technology has announced a 64-core ARM server CPU, which according to the press release will deliver 512 gigaflops of performance. The new chip, known as FT-2000/64, is aimed at “high throughput and high performance servers.”

Phytium is a chip design enterprise, based in Tianjin, China. In March 2015, the company released its first products: the FT-1500A/4 and FT-1500A/16, 4-core and 16-core implementations, respectively of the ARMv8 design.

Phytium was on hand at last week’s Hot Chips 28 conference, showing off its chippery and laptop, desktop and server machines employing its “Earth” and “Mars” FT series of ARM chips. Most of the interest that people showed in the server variants, which are both based on variants of the “Xiaomi” core design that the company has cooked up based on ARMv8 intellectual property licensed from ARM Holdings. There is chatter that one of the three Chinese exascale machines, which we wrote about here, will employ a future Phytium processor, but we were unable to confirm this with the Phytium executives at the event. What we can tell you is that the first engineering samples of the two Earth ARM chips, the FT-1500A/4 and the FT-1500A/16, as well as the one Mars ARM chip, the FT-2000/64, are back from Taiwan Semiconductor Manufacturing Corp and that we saw systems running the Kylin Linux operating system (a variant of Canonical’s Ubuntu) at the Hot Chips event.

Here are the key chip features from the FT-2000/64 product page: 

  • Process:Manufacturing with 28nm process
  • Core:Integrating sixty-four FTC661 cores
  • Frequency:Running at 1.5GHz~2.0GHz
  • Cache:Integrating 32MB L2 cache and extending 128MB LLC
  • Extension Interface:Integrating eight proprietary extension interfaces, each delivering 19.2GB/s effective r/w bandwidth
  • Memory Interface:Extending sixteen DDR3-1600 memory controllers, which can deliver 204.8GB/s memory access bandwidth.
  • I/O Interface:Integrating two x16 or four x8 PCIE Gen3 interface
  • Power:Max. power 100W
  • Package:FCBGA package with 2892 pins
No pricing was provided on the new chips, and it’s unclear from the press release if the product is available today. The next time we hear about the FT-2000/64 might very well be when it shows up in a TOP500 supercomputer. Stay tuned.

4μm thick fabric like flexible circuit

According to the Korea Advanced Institute of Science and Technology (KAIST), complete with substrate, an active matrix for a flexible display need only be 4μm thick. 

Initially on a sacrificial laser-reactive substrate the matrix of ultra-thin n-type transparent oxide thin-film transistors (TFTs) were fabricated for the back plane.

Laser irradiation from the backside of the substrate split off only the oxide TFT array as a result of reaction with the laser-reactive layer.

The free transistors were transferred to a 4μm  polyethylene terephthalate (PET) substrate, and then the combination was further transferred con-formally to the surface of human skin and artificial leather to demonstrate the possibility of the wearable application.

“The attached oxide TFTs showed high optical transparency of 83% and 40cm2/Vs even under several cycles of severe bending tests,” said KAIST.

The method is called inorganic-based laser lift-off (ILLO).

“By using our ILLO process, the technological barriers for high performance transparent flexible displays have been overcome at a relatively low cost by removing expensive polyimide substrates. Moreover, the high-quality oxide semiconductor can be easily transferred onto skin-like, or any flexible, substrate for wearable application,” said Professor Keon Jae Lee.

Con-formal displays are a potential application.

“With the advent of the Internet of Things era, demand has grown for wearable and transparent displays that can be applied to fields such as augmented reality and skin-like thin flexible devices,” said KAIST. “However, previous flexible transparent displays have poor transparency and low electrical performance. To improve the transparency and performance, past research efforts have tried to use inorganic-based electronics, but the fundamental thermal instabilities of plastic substrates have hampered the high temperature process, an essential step necessary for the fabrication of high performance electronic devices.”