Featured post

Top 5 books to refer for a VHDL beginner

VHDL (VHSIC-HDL, Very High-Speed Integrated Circuit Hardware Description Language) is a hardware description language used in electronic des...

Showing posts with label IBM. Show all posts
Showing posts with label IBM. Show all posts

Monday, 5 October 2015

IBM steps forward to replace Silicon Transistors with Carbon Nanotubes

Carbon Nanotube
Carbon Nanotube
The breakthrough is that - IBM improves carbon nanotube scaling below 10nm. How ever before calling it as breakthrough we should also check out what other giants like Intel, AMD, TSMC or Samsung is working on. This breakthrough has relation with the Moore's Law. Yes you got right..!!It says that the transistor counts double only every 18 month or so. It’s the time that Intel marks 40 years of the 4004 microprocessor and here now lying some fear that progress will soon hit a wall.

You can refer to my post History and Evolution of Integrated Circuits where it shows clear progress of semiconductor industry.

But not to worry, IBM has developed a way that could help the semiconductor industry continue to make ever more dense chips to support Moore's law. These chips will be both faster and more power efficient.

Few glimpse of carbon nanotube transistors

  • Carbon nanotube transistors can operate at ten nanometers
  • Equivalent to 10,000 times thinner than a strand of human hair
  • Less than half the size of today’s leading silicon technology
  • Could also mean wearables that attach directly to skin and internal organs


Here I have an animation for Animated Nanofactory in Action.

As a result of this the devices will become smaller, increased contact resistance for carbon nanotubes has hindered performance gains until now.

These results could overcome contact resistance challenges all the way to the 1.8 nanometer node – four technology generations away.

A project at IBM is now aiming to have transistors built using carbon nanotubes ready to take over from silicon transistors soon after 2020. According to the semiconductor industry’s roadmap, transistors at that point must have features as small as five nanometers to keep up with the continuous miniaturization of computer chips.

IBM has previously shown that carbon nanotube transistors can operate as excellent switches at channel dimensions of less than ten nanometers – the equivalent to 10,000 times thinner than a strand of human hair and less than half the size of today’s leading silicon technology.

IBM's new contact approach overcomes the other major hurdle in incorporating carbon nanotubes into semiconductor devices, which could result in smaller chips with greater performance and lower power consumption.

Earlier this summer, IBM unveiled the first 7 nanometer node silicon test chip, pushing the limits of silicon technologies and ensuring further innovations for IBM Systems and the IT industry.

By advancing research of carbon nanotubes to replace traditional silicon devices, IBM is paving the way for a post-silicon future and delivering on its $3 billion chip R&D investment announced in July 2014.

IBM’s chosen design uses six nanotubes lined up in parallel to make a single transistor. Each nanotube is 1.4 nanometers wide, about 30 nanometers long, and spaced roughly eight nanometers apart from its neighbors. Both ends of the six tubes are embedded into electrodes that supply current, leaving around 10 nanometers of their lengths exposed in the middle. A third electrode runs perpendicularly underneath this portion of the tubes and switches the transistor on and off to represent digital 1s and 0s.

The IBM team has tested nanotube transistors with that design, but so far it hasn't found a way to position the nanotubes closely enough together, because existing chip technology can’t work at that scale. The favored solution is to chemically label the substrate and nanotubes with compounds that would cause them to self-assemble into position. Those compounds could then be stripped away, leaving the nanotubes arranged correctly and ready to have electrodes and other circuitry added to finish a chip.

Friday, 3 January 2014

India's fab project fails to attract big chip players

FAB-INDIA-IBM-ST Two consortia, led by Hindustan Semiconductor Manufacturing Corp. and Jaypee Associates, remain the top contenders to construct and equip proposed wafer fabrication facilities in India. No large semiconductors manufacturers have emerged as leaders for the project. HSMC is working with STMicroelectronics and Silterra, while Jaypee is collaborating with IBM Microelectronics and Tower Semiconductor.

Under the current proposals, Jaypee has tied up with IBM and Tower Jazz and has proposed a facility in Greater Noida with an investment of Rs 26,300 crore, while HSMC has partnered with ST Microelectronics and Silterra and has planned its unit at Prantij near Gandhinagar in Gujarat with an investment of Rs 25,250 crore.

India is trying to create an electronics manufacturing ecosystem to prevent the loss of billions of dollars of foreign exchange in such imports every year. This bill, expected to reach $55 billion (aboutRs 3.4 lakh crore) by 2020 from about $7 billion (Rs 43,600 crore) now, is projected to outstrip oil imports, according to a report commissioned by the industry lobby India Electronics and Semiconductor Association last year.

According to two government officials, the Department of Electronics and Information Technology (DeitY) has received only two new proposals - one by Interactivity Group (supported by a group of IIT alumni) and another by APSTL, an Arizona-headquartered technology firm. Even though an empowered committee set up to evaluate all the proposals is still studying them, an official said it is unlikely something concrete will come out of the two new applications.

With the government's support for setting up the fab firming up at about 40 per cent of the total cost, officials were keen on figuring out if other chipmakers could also be enticed to show interest.

Typically, setting up a chip foundry costs around $4-5 billion (Rs 24,800-31,000 crore). "The idea was, with the incentives firmed up, could we push the fence-sitters off the fence, but that didn't happen," the industry executive said. The deadline to submit initial plans in the fab under a separate call for expressions of interest ran out in November, and there have been no new viable plans submitted other than the two the government had already approved in-principle.

However, a lack of interest the second time around as well underlines the concerns about the feasibility of setting up fab units in the country. Experts argue the long-gestation period and the technology mandates of the government may diminish the usefulness of the projects when they finally come up. The facilities are expected to start production only sometime in 2017.

Tuesday, 30 October 2012

IBM's New Chip Tech.

IBM Scientist holds bottles full of carbon nanotubes IBM has put the chip industry on notice by inventing a new technology that would replace silicon with a new material, carbon nanotubes.

IBM has found a new way to put what seems like an impossibly large number of transistors into an insanely small area, the width of only a few atoms. That's 10,000 times thinner than a strand of human hair and less than half the size of the leading silicon technology.

Or as IBM explains:

Carbon nanotubes are single atomic sheets of carbon rolled up into a tube. The carbon nanotube forms the core of a transistor device that will work in a fashion similar to the current silicon transistor, but will be better performing. They could be used to replace the transistors in chips that power our data-crunching servers, high performing computers and ultra fast smart phones.

Inventing the tech is one thing, being able to manufacture it at scale is another. And that's the real breakthrough IBM announced. It has put more than 10,000 of these "nano-sized tubes of carbon" onto single chip using a standard fabricating method.

It will still be years, maybe even a decade, before carbon nanotubes would really replace silicon-based chips in our servers and our smartphones. But this breakthrough is important because the chip industry is reaching a point where it physically can't squeeze much more processing power onto existing forms of chips.  Some have predicted that we'll soon reach an end to Moore's Law which tries to double the density of chips on a wafer every two years.

Chip transistors are already super tiny—or nanoscale.

ibm-carbon-nanotube

This is what a nanotube looks like under a microscope.

Earlier this year Intel dumped $4.1 billion into two new techniques to help the chip industry continue to get more powerful at smaller scales. These two new technologies are not the same as what IBM is working on.

IBM's carbon-based method may represent a whole new beginning for Moore's Law, the industry maxim that chips keep getting cheaper, more powerful, and smaller.

Saturday, 14 January 2012

IBM developing storage device of just 12 atoms..!!!

If you're impressed with how much data can be stored on your portable hard drive, well ... that's nothing. Scientists have now created a functioning magnetic data storage unit that measures just 4 by 16 nanometers, uses 12 atoms per bit, and can store an entire byte (8 bits) on as little as 96 atoms - by contrast, a regular hard drive requires half a billion atoms for each byte. It was created by a team of scientists from IBM and the German Center for Free-Electron Laser Science (CFEL), which is a joint venture of the Deutsches Elektronen-Synchrotron DESY research center in Hamburg, the Max-Planck-Society and the University of Hamburg.

The storage unit was created one atom at a time, using a scanning tunneling microscope located at IBM's Almaden Research Center in San Jose, California. Iron atoms were arranged in rows of six, these rows then grouped into pairs, each pair capable of storing one bit of information - a byte would require eight pairs of rows.

Each pair can be set to one of two possible magnetic configurations, which serve as the equivalent of a 1 or 0. Using the tip of the microscope, the scientists were able to flip between those two configurations on each pair, by administering an electric pulse. They were subsequently able to "read" the configuration of each pair, by applying a weaker pulse using the same microscope.

While conventional hard drives utilize a type of magnetism known as ferromagnetism, the atom-scale device uses its opposite, antiferromagnetism. In antiferromagnetic material, the spins of neighboring atoms are oppositely aligned, which keeps them from magnetically interfering with one another. The upshot is that the paired rows of atoms were able to be packed just one nanometer apart from one another, which wouldn't otherwise have been possible.

Before you start expecting to find antiferromagnetic rows of atoms in your smartphone, however, a little work still needs to be done. Presently, the material must be kept at a temperature of 5 Kelvin, or -268ºC (-450ºF). The IBM/CFEL researchers are confident, however, that subsequent arrays of 200 atoms could be stable at room temperature.

It was found that 12 atoms was the minimum number that could be used for storing each bit, before quantum effects set in and distorted the information. "We have learned to control quantum effects through form and size of the iron atom rows," said CFEL's Sebastian Loth. "We can now use this ability to investigate how quantum mechanics kicks in. What separates quantum magnets from classical magnets? How does a magnet behave at the frontier between both worlds? These are exciting questions that soon could be answered."

IBM Research - Almaden physicist Andreas Heinrich explains the industry-wide need to examine the future of storage at the atomic scale and how he and his teammates started with 1 atom and a scanning tunneling microscope and eventually succeeded in storing one bit of magnetic information reliably in 12 atoms.