Featured post

Top 5 books to refer for a VHDL beginner

VHDL (VHSIC-HDL, Very High-Speed Integrated Circuit Hardware Description Language) is a hardware description language used in electronic des...

Sunday, 22 April 2012

Intel to Present on 22-nm Tri-gate Technology at VLSI Symposium

Just published is the press release and tip-sheet on the 2012 VLSI Symposia on VLSI Technology and Circuits, this year in Hawaii. Listed first in the VLSI Technology highlight papers is Intel’s paper, “A 22nm High-Performance and Low-Power CMOS Technology Featuring Fully Depleted Tri-Gate Transistors, Self-Aligned Contacts and High-Density MIM Capacitors”, to be presented by Chris Auth in slot T15-2.

There was a fair bit of frustration at last year’s IEDM that there was no Intel paper on their tri-gate technology, although they had several others at the conference. The Intel folks I talked to said that there was reluctance to publish, since the other leading-edge semiconductor companies were not presenting – conferences were no longer the exchange of information that they have been in the past. I have to say I agree, some companies are keeping their technological cards very close to their corporate chests these days!

Also, no product was in the public domain at that point, though Intel claimed to be in production. By the time VLSI comes around in June, we should all be able to get Ivy Bridge based Ultrabooks, and we at Chipworks will have pulled a few chips apart.

In the paper the process is claimed to have “feature sizes as small as eight nm, third-generation high-k/metal gate stack technology, and the latest strained-silicon techniques. It achieves the highest drive currents yet reported for NMOS and PMOS devices in volume manufacturing for given off-currents and voltage. To demonstrate the technology’s versatility and performance, Intel researchers used it to build a 380-Mb SRAM memory using three different cell designs: a high-density 0.092- µm2 cell, a low-voltage 0.108- µm2 cell, and a high-performance 0.130-µm2 cell. The SRAM operated at 4.6 GHz at 1 V.”

The tip-sheet also posted the first Intel tri-gate images that I’ve seen in a while:

TEM images of Intel 22-nm PMOS tri-gate transistor (a) and source/drain region (b)

Here we are looking at sections parallel to the gate, across the fin. There is no scale bar, so fin width is an unknown; and the taper on the fin is a bit of a surprise. The top of the fin is rounded, likely to avoid reliability problems from electric field concentration at corners.

In the gate metal, there seems to be a layer of titanium nitride (TiN) above the thin dark line that is the high-k, so we can surmise that the PMOS work-function metal is TiN, as in previous generations. The gate fill itself is very black, so that appears to have been changed from the Al/Ti fill used before; possibly to tungsten or some other heavier metal.

The source/drain image confirms the use of epi, and the darker area is again likely SiGe, both for strain and resistance improvement. At the moment it’s hard to say if the taper is a function of manufacturing convenience (easier to etch?), or if there are some device physics advantages that improve transistor operation. We’ll see in June!

Wednesday, 18 April 2012

Xilinx Inaugurates Expanded Site in Hyderabad for R&D, Technical Support

<br />                        <br />                                                <br />                                                                        <br />                                                                                                <br />                                                                                                                        Xilinx is the worldwide leader of programmable logic solutions. (PRNewsFoto/Xilinx)<br />                                                                                                <br />                                                                        <br />                                                <br />                        <br />                    Xilinx India team pivotal to development, delivery & support of company's flagship programmable platforms.

 

Xilinx, Inc. underscored its commitment to the emerging, high-growth market and its growing employee base in India with the inauguration of a new, expanded Xilinx India site in Hi-Tech city. The 131,000 square-foot office building is more than double the size of the previous site to accommodate engineering labs and collaboration space for end-to-end product development, a larger, energy-efficient data center, and expanded facilities for customer and employee events.

Hosted by Xilinx President and CEO, Moshe Gavrielov, Senior Vice President of Programmable Platforms Development, Victor Peng, and Xilinx India Site Director and CTO, Vamsi Boppana, the inaugural event began with a traditional lamplighting ceremony to mark the beginning of an exciting new chapter for Xilinx India.

The Xilinx India site, which represents the largest R&D centre outside of the company's U.S. headquarters, is a critical contributor to Xilinx's success as the world's leading provider of 'all programmable' technologies and devices. This includes its newest, industry leading portfolio of 28nm 7 series and Zynq(TM)-7000 Extensible Processing Platform (EPP) families, which enable breakthroughs in price/performance/watt and programmable systems integration.

Currently, more than 400 employees in Hyderabad report into Xilinx's Programmable Platforms Development (PPD) and Worldwide Technical Support groups, which are global organizations responsible for development and delivery of the company's flagship programmable platforms and support of local, regional and multi-national customers in India. The expansion and increasing role of the Xilinx India engineering team is well aligned to the National Policy on Electronics goals to transform India into a global R&D hub.

"We're proud to commemorate the opening of our new Hyderabad site today and to celebrate the incredible contributions of our employees in India," said Gavrielov at today's inauguration ceremonies. "The Xilinx India engineering team will continue to play a pivotal role in our success as part of Xilinx's world-class PPD engineering organization. Notably, more than half the Zynq engineering team is based in India, with some aspects entirely designed and verified in India. The India team has sole ownership and development responsibility for significant aspects of our next-generationtool suite accelerating programmable design productivity."

Wednesday, 28 March 2012

Reset synchronizer

A day before there was a discussion about Synchronous and Asynchronous reset and Reset Synchronizer. I would like to share my views and some Ideas that I came to know.

Implementation of Synchronous and Asynchronous reset should depend on what you are looking at. There is a timing constraint on the rising edge of the reset ( assuming an active low reset) which can create one cycle uncertainty in the data being latched in by the FF. So for example if the start of a state machine depends on when the input FF gets the data and it doesn't matter if it starts one cycle early or late, there is no problem in using Asynchronous Reset. But if you have a high speed interface with say 6 bits of data being latched by the FF's and reset release happens very close to the clock edge then you have a serious problem that some Flops can get the data and some won't.

So it is really depended on what your design does on what kind of reset you should have. The safe methodology from my point of view is to use Asynch resets as long as the clock starts after the reset has been released.  Or to synchronize the Reset with the clock and make sure that the reset network delay including the CLK->Q delay of the synchronizing flop is less then the clock period - the worst removal timing of the FF's on the network.

 

Reset Synchronisation

Sunday, 4 March 2012

VHDL Attributes

Formal Definition
A value, function, type, range, signal, or constant that may be associated with one or more named entities in a description.

Simplified Syntax
object'attribute_name

Description
Attributes allow retrieving information about named entities: types, objects, subprograms etc. VHDL standard defines a set of predefined attributes. Additionally, users can define new attributes, and then assign them to named entities by specifying the entity and the attribute values for it. See attributes (user-defined) for details.

Predefined attributes denote values, functions, types, and ranges that characterize various VHDL entities. Separate sets of attributes are predefined for types, array objects or their aliases, signals and named entities.

Each type or subtype T has a basic attribute called T'Base, which indicates the base type for type T (Table 1). It should be noted that this attribute could be used only as a prefix for other attributes.

Table 1. Attributes available for all types

Attribute

Result

T'Base

base type of T

Scalar types have attributes, which are described in the Table 2. Letter T indicates the scalar type.

Table 2. Scalar type attributes

Attribute

Result type

Result

T'Left

same as T

leftmost value of T

T'Right

same as T

rightmost value of T

T'Low

same as T

least value in T

T'High

same as T

greatest value in T

T'Ascending

boolean

true if T is an ascending range, false otherwise

T'Image(x)

string

a textual representation of the value x of type T

T'Value(s)

base type of T

value in T represented by the string s

Discrete or physical types and subtypes additionally have attributes, which are described in Table 3. The discrete or physical types are marked with letter T before their names.

Table 3. Attributes of discrete or physical types and subtypes

Attribute

Result type

Result

T'Pos(s)

universal integer

position number of s in T

T'Val(x)

base type of T

value at position x in T (x is integer)

T'Succ(s)

base type of T

value at position one greater than s in T

T'Pred(s)

base type of T

value at position one less than s in T

T'Leftof(s)

base type of T

value at position one to the left of s in T

T'Rightof(s)

base type of T

value at position one to the right of s in T

Array types or objects of the array types have attributes, which are listed in the Table .4. Aliases of the array type objects have the same attributes. Letter A denotes the array type or array objects below.

Table 4. Attributes of the array type or objects of the array type

Attribute

Result

A'Left(n)

leftmost value in index range of dimension n

A'Right(n)

rightmost value in index range of dimension n

A'Low(n)

lower bound of index range of dimension n

A'High(n)

upper bound of index range of dimension n

A'Range(n)

index range of dimension n

A'Reverse_range(n)

reversed index range of dimension n

A'Length (n)

number of values in the n-th index range

A'Ascending(n)

True if index range of dimension n is ascending, False otherwise

Signal attributes are listed in Table 5. Letter S indicates the signal names.

Table 5. Signals attributes

Attribute

Result

S'Delayed(t)

implicit signal, equivalent to signal S, but delayed t units of time

S'Stable(t)

implicit signal that has the value True when no event has occurred on S for t time units, False otherwise

S'Quiet(t)

implicit signal that has the value True when no transaction has occurred on S for t time units, False otherwise

S'Transaction

implicit signal of type Bit whose value is changed in each simulation cycle in which a transaction occurs on S (signal S becomes active)

S'Event

True if an event has occurred on S in the current simulation cycle, False otherwise

S'Active

True if a transaction has occurred on S in the current simulation cycle, False otherwise

S'Last_event

the amount of time since last event occurred on S, if no event has yet occurred it returns Time'High

S'Last_active

the amount of time since last transaction occurred on S, if no event has yet occurred it returns Time'High

S'Last_value

the previous value of S before last event occurred on it

S'Driving

True if the process is driving S or every element of a composite S, or False if the current value of the driver for S or any element of S in the process is determined by the null transaction

S'Driving_value

the current value of the driver for S in the process containing the assignment statement to S

The named entities have attributes described in Table 6. Letter E denotes the named entities.

Table 6. Attributes of named entities

Attribute

Result

E'Simple_name

a string representing the simple name, character literal or operator symbol defined in the declaration of the item E

E'Path_name

a string describing the path through the design hierarchy, from the root entity or package to the item E

E'Instance_name

a string describing the path through the design hierarchy, from the root entity or package to the item E, but including the names of the entity and architecture bound to each component instance in the path

Paths which can be written using E'Path_name and E'Instance_name are used for reporting and assertion statements. They allow specifying precisely where warnings or errors are generated. E'Simple_name attribute refers to all named entities, E'Path_name and E'Instance_name can refer to all named entities apart from the local ports and generic parameters in the component declaration.

There is one more predefined attribute: 'Foreign' that allows the user to transfer additional information to the simulator. The information contains the instruction for special treatment of a given named entity. The exact interpretation of this attribute, however, depends on its implementation in particular simulator.

 

Examples

Example 1

type Table is array (1 to 8) of Bit;
variable Array_1 : Table := "10001111";
Array_1'Left, the leftmost value in index range of Table array, is equal to 1.

Example 2

type Table is array (Positive range <>) of Bit;
subtype Table_New is Table (1 to 4);
Table_New'Base, the base type of the Table_New subtype is Table.

Example 3

type New_Range is range 1 to 10;
New_Range'Ascending is TRUE (the New_Range type is of ascending range).

Example 4

type New_Values is (Low, High, Middle);
New_Values'Pred(High) will bring the 'Low' value.

Example 5

type Table is array (1 to 8) of Bit;

Table'Range(1) is the range of the first index of Table type and returns '1 to 8'; Table'Range will have the same interpretation for one dimensional array.

 

Important Notes

  • Not all predefined attributes are supported by synthesis tools; most tools support 'high, 'low, 'left, 'right, range, 'reverse_range, 'length and 'event. Some also support'last_value and 'stable.

Sunday, 5 February 2012

VHDL Configuration

Used to bind component instances to design entities and collect architectures to make, typically, a simulatable test bench. One configuration could create a functional simulation while another configuration could create the complete detailed logic design. With an appropriate test bench the results of the two configurations can be compared.

Note that significant nesting depth can occur on hierarchal designs. There is a capability to bind various architectures with instances of components in the hierarchy. To avoid nesting depth use a configuration for each architecture level and a configuration of configurations. Most VHDL compilation/simulation systems allow the top level configuration name to be elaborated and simulated.

Syntax:
configuration
identifier of entity_name is
     [ declarations , see allowed list below ]
     [ block configuration , see allowed list below ]
  end configuration identifier ; 

To understand configuration in depth let us consider below entity and architectures,

Entity E1 is
end E1;

Architecture A1 of E1 is
end Architecture A1;

Architecture A2 of E1 is
end Architecture A2;

Architecture A3 of E1 is
end Architecture A3;

Entity E2 is
end E2;

Architecture A1 of E2 is
   Component E1;
begin
   L1: E1 port map ();
   L2: E1 port map ();
end Architecture A1;

Architecture A2 of E2 is
begin
behavioural discription;
end Architecture A2;

Entity E3 is
end E3;

Architecture A1 of E3 is
   Component E1;
   Component E2;

begin
   L1: E1 port map ();
   L2: E2 port map ();
   L3: E2 port map ();
   L4: E1 port map ();
end Architecture A1;

Architecture A2 of E3 is
begin
behavioural discription;
end Architecture A2;

Below is the detailed configuration for entity E3;

Configuration C1 of E3 is
   for A1
        for L1 : E1
        use entity work.E1(A1);
        end for;

        for L2 : E2
        use entity work.E2(A2);
        end for;

        for L3 : E2
        use entity work.E2(A1);
             for A1
             use entity work.E1(A2);
             end for;
        end for;

        for L4 : E1
        use entity work.E1(A3);
        end for;
   end for;

end Configuration C1;

Monday, 16 January 2012

Shared Variable in VHDL

How to use a single variable in more than one process…!!

VHDL87 limited the scope of the variable to the process in which it was declared. Signals were the only means of communication between processes, but signal assignments require an advance in either delta time or simulation time.

VHDL '93 introduced shared variables which are available to more than one process. Like ordinary VHDL variables, their assignments take effect immediately. However, caution must be exercised when using shared variables because multiple processes making assignments to the same shared variable can lead to unpredictable behavior if the assignments are made concurrently. The VHDL ‘93 standard does not define the value of a shared variable it two or more processes make assignments in the same simulation cycle.

The syntax of the shared variable is similar to that of the normal variable. However, the keyword SHARED is placed in front of VARIABLE in the declaration

Example:

Architecture SV_example of example is
      shared variable status_signal : bit;
begin
     p1 : process (Clock,In1)
     begin
          if(status_signal) then
          ...
          end if;
          status_signal :='0';
     end process;

     p2 : process (Clock,In2)
     begin
          if(!(status_signal)) then
          ....
          end if;
          status_signal:='1';
     end process p2;

end SV_example;

Above example shows the use of shared variable in more than one process.

Saturday, 14 January 2012

IBM developing storage device of just 12 atoms..!!!

If you're impressed with how much data can be stored on your portable hard drive, well ... that's nothing. Scientists have now created a functioning magnetic data storage unit that measures just 4 by 16 nanometers, uses 12 atoms per bit, and can store an entire byte (8 bits) on as little as 96 atoms - by contrast, a regular hard drive requires half a billion atoms for each byte. It was created by a team of scientists from IBM and the German Center for Free-Electron Laser Science (CFEL), which is a joint venture of the Deutsches Elektronen-Synchrotron DESY research center in Hamburg, the Max-Planck-Society and the University of Hamburg.

The storage unit was created one atom at a time, using a scanning tunneling microscope located at IBM's Almaden Research Center in San Jose, California. Iron atoms were arranged in rows of six, these rows then grouped into pairs, each pair capable of storing one bit of information - a byte would require eight pairs of rows.

Each pair can be set to one of two possible magnetic configurations, which serve as the equivalent of a 1 or 0. Using the tip of the microscope, the scientists were able to flip between those two configurations on each pair, by administering an electric pulse. They were subsequently able to "read" the configuration of each pair, by applying a weaker pulse using the same microscope.

While conventional hard drives utilize a type of magnetism known as ferromagnetism, the atom-scale device uses its opposite, antiferromagnetism. In antiferromagnetic material, the spins of neighboring atoms are oppositely aligned, which keeps them from magnetically interfering with one another. The upshot is that the paired rows of atoms were able to be packed just one nanometer apart from one another, which wouldn't otherwise have been possible.

Before you start expecting to find antiferromagnetic rows of atoms in your smartphone, however, a little work still needs to be done. Presently, the material must be kept at a temperature of 5 Kelvin, or -268ºC (-450ºF). The IBM/CFEL researchers are confident, however, that subsequent arrays of 200 atoms could be stable at room temperature.

It was found that 12 atoms was the minimum number that could be used for storing each bit, before quantum effects set in and distorted the information. "We have learned to control quantum effects through form and size of the iron atom rows," said CFEL's Sebastian Loth. "We can now use this ability to investigate how quantum mechanics kicks in. What separates quantum magnets from classical magnets? How does a magnet behave at the frontier between both worlds? These are exciting questions that soon could be answered."

IBM Research - Almaden physicist Andreas Heinrich explains the industry-wide need to examine the future of storage at the atomic scale and how he and his teammates started with 1 atom and a scanning tunneling microscope and eventually succeeded in storing one bit of magnetic information reliably in 12 atoms.