Featured post

Top 5 books to refer for a VHDL beginner

VHDL (VHSIC-HDL, Very High-Speed Integrated Circuit Hardware Description Language) is a hardware description language used in electronic des...

Showing posts with label Green Electronics. Show all posts
Showing posts with label Green Electronics. Show all posts

Tuesday, 7 October 2014

Transient Materials - Electronics that melt away

transient_materialsImagine tossing your old phone in the toilet, watching it dissolve and then flushing it down, instead of having it wind up in a landfill. Scientists are working on electronic devices that can be triggered to disappear when they are no longer needed.

The technology is years away, but Assistant Professor Reza Montazami and his research team in the mechanical engineering labs at Iowa State University have published a report that shows progress is being made. In the two years they've been working on the project, they have created a fully dissolvable and working antenna.

"You can actually send a signal to your passport via satellite that causes the passport to physically degrade, so no one can use it," Montazami said.

The electronics, made with special "transient materials," could have far-ranging possibilities. Dissolvable electronics could be used in medicine for localizing treatment and delivering vaccines inside the body. They also could eliminate extra surgeries to remove temporarily implanted devices.The military could design information-gathering gadgets that could complete their mission and dissolve without leaving a trace.

The researchers have developed and tested transient resistors and capacitors. They’re working on transient LED and transistor technology, said Montazami, who started the research as a way to connect his background in solid-state physics and materials science with applied work in mechanical engineering.

As the technology develops, Montazami sees more and more potential for the commercial application of transient materials.

Monday, 26 August 2013

Tesla Model S – A Premium Electric Sedan

Tesla Model S- A Premium Electric Sedan

Introducing a car so advanced it sets the new standard for premium performance. At the heart of the vehicle is the proven Tesla powertrain, delivering both unprecedented range and a thrilling drive experience. With a rigid body structure, nearly 50/50 weight distribution and a remarkably low center of gravity, Model S offers the responsiveness and agility expected from the world’s best sports cars while providing the ride quality of a sedan.

teslamodels-autoblog53013Tesla’s advanced electric powertrain delivers exhilarating performance. Unlike the internal combustion engine with hundreds of moving pieces that spark, pump, belch, and groan, the Tesla motor has only one moving piece: the rotor. As a result, Model S acceleration is instantaneous, like flipping a switch. Hit the accelerator. In 5.4 seconds, Model S is traveling 60 miles per hour, without hesitation and without a drop of gasoline.

The Model S suspension system was developed for the unique architecture of Model S. It works in harmony with the rigid and light Tesla platform to provide precision handling and optimum comfort. Unencumbered by an engine, the lightweight front suspension optimizes wheel control. The rear multi-link suspension is designed to seamlessly integrate with the powertrain.

Model S Performance takes electric performance to the next level. Equipped with the 85 kilowatt-hour battery and a high performance drive inverter, Model S Performance accelerates to 60 miles per hour in 4.2 seconds. If driven the same way as Model S, both cars achieve the same efficiency thanks to the unique powertrain design.

Performance Plus takes one of the world's best sedans into supercar handling territory, while also improving ride quality and range. After hundreds of iterations affecting every detail of the suspension, our vehicle dynamics team was able to achieve the rare outcome of simultaneously improving performance, comfort and efficiency. In addition to upgraded dampers, bushings, stabilizer bars and tires (Michelin Pilot Sport PS2), the rear tires are 20 mm wider and staggered for improved acceleration on low grip surfaces.

2013-tesla-model-s-battery-pack-comparison-inline-photo-493548-s-originalModel S sets the bar for electric driving range. Model S is offered with three battery options, each delivering unprecedented range. All three batteries are contained within the same enclosure, integrating with the vehicle in the same way, providing structural, aerodynamic, and handling advantages. All three batteries use automotive-grade lithium-ion cells arranged for optimum energy density, thermal management, and safety.

Model S comes standard with everything you need to plug into the most common 240-volt outlet, standard 120-volt wall outlets and public stations. Using a high-amperage 240-volt outlet, Model S can be recharged at the rate of 100 km range per hour. A fifty-percent charge in thirty minutes can be achieved with a Tesla Supercharger.

Ask Tesla owners how long it takes to charge and they'll say just a few moments. Like they do with a cell phone, most Tesla owners plug in at night. By morning, their battery is completely recharged.

2013-Tesla-Model-S-cockpitAs you approach, the Tesla key commands the door handle to unlock, waiting for a simple tap to present itself. With it in your pocket, Model S turns on as you buckle in to the driver’s seat. The touchscreen, digital instrument cluster, and steering wheel controls seamlessly integrate media, navigation, communications, cabin controls and vehicle data. From the moment you open the door, the high-resolution Model S touchscreen powers on and returns to its last function. The most commonly used controls line the bottom of the screen for easy access any time and connectivity keeps you connected while on the go.

With the All Glass Panoramic Roof, Model S is the only sedan capable of delivering a convertible-like drive experience every day. It's more than a sunroof: the entire roof is constructed from lightweight safety glass. With a simple swipe of the Touchscreen, it opens wider than any other sedan's panoramic roof. On even the hottest days, the innovative glass keeps the cabin comfortable.

Model S is a driver’s car. Behind the wheel, you’ll notice that Tesla has combined meticulous noise engineering with Tesla’s uniquely quiet powertrain to obtain the sound dynamics of a recording studio. The gem of the interior is the 17” touchscreen. It puts rich content at your fingertips and provides mobile connectivity.

With no tailpipe to spew harmful emissions, Tesla vehicles liberate their owners from the petroleum-burning paradigm. They are the only cars to getmore efficient from the moment they're first driven.

Gasoline-powered vehicles and hybrids burn refined petroleum. Tesla vehicles can use electricity however it is produced, be it from coal, solar, hydro, geothermal, or wind power. As the grid shifts to increasingly efficient technologies, Tesla owners reap the efficiency benefits.

Dimensions

  • Head room (front/rear): 38.8/35.3"
  • Leg room (front/rear): 42.7/35.4"
  • Shoulder room (front/rear): 57.7/55.0"
  • Hip room (front/rear): 55.0/54.7"
  • Seating capacity: 5 adults
  • Total cargo volume: 31.6 cu ft
  • Rear cargo volume (seats up/down): 26.3/58.1 cu ft
  • Front trunk cargo volume: 5.3 cu ft
  • Turning circle: 37 ft
  • Curb weight: 4,647.3 lbs
  • Weight distribution (%, front/rear): approx. 48/52

Body

  • Lightweight aluminum body reinforced with high strength, boron steel elements
  • UV and infrared blocking safety glass windshield
  • Rain sensing, adjustable speed windshield wipers
  • Frameless, tempered safety glass front windows
  • Solar absorbing, laminated safety glass rear window with defroster
  • Flush mounted door handles
  • Manual folding side mirrors
  • 19" aluminum alloy wheels with all-season tires (Goodyear Eagle RS-A2 245/45R19)
  • Aluminum roof
  • Xenon headlights with automatic on/off
  • Backlit side turn signals, front side marker lights and rear reflex lights
  • LED rear taillights and high-mounted LED stop lamp

Powertrain

  • Model S is a rear wheel drive electric vehicle. The liquid-cooled powertrain includes the battery, motor, drive inverter, and gear box.
  • 60 kWh microprocessor controlled, lithium-ion battery
  • Three phase, four pole AC induction motor with copper rotor
  • Drive inverter with variable frequency drive and regenerative braking system
  • Single speed fixed gear with 9.73:1 reduction ratio

Suspension, Steering, and Brakes

  • Double wishbone, virtual steer axis coil spring front suspension and independent multi-link coil spring rear suspension
  • Variable ratio, speed sensitive, rack and pinion electronic power steering
  • Electronic Stability Control
  • Traction Control
  • Anti-Lock disc brakes (ABS) with ventilated rotors and electronically actuated parking brake; front: 355 mm x 32 mm; rear: 365 mm x 28 mm

Charging

  • 10 kW capable on-board charger with the following input compatibility: 85-265 V, 45-65 Hz, 1-40 A (Optional 20 kW capable Twin Chargers increases input compatibility to 80 A)
  • Peak charger efficiency of 92%
  • 10 kW capable Universal Mobile Connector with 110 V, 240 V, and J1772 adapters

Interior

  • Twelve way, power adjustable, heated front seats
  • Hand wrapped microfiber and synthetic leather interior surfaces in black
  • Piano black décor accents
  • Center armrest with two cup holders
  • Open center console storage area
  • Metal interior door handles
  • 60/40 split fold-down second row seats
  • 200 watt, seven speaker stereo system with AM/FM/HD radio. Supports MP3, AAC, and MP4 music formats. System includes four speakers, two tweeters and one center channel speaker.

Instrumentation

  • 17" capacitive touchscreen with media, communication, cabin, and vehicle controls
  • Bluetooth wireless technology for hands-free calling and streaming music
  • Three spoke, multi-function steering wheel with tactile controls
  • Tire pressure monitoring system

Warranty

  • 4 year or 50,000 mile, whichever comes first, new vehicle limited warranty
  • 60 kWh battery has an 8 year or 125,000 mile, whichever comes first, warranty
  • 85 kWh battery has an 8 year, unlimited mile warranty

Convenience

  • Keyless entry
  • Driver seat detection sensor for start/stop functionality
  • Cruise Control
  • High definition backup camera
  • Manual rear liftgate
  • Power tilt and telescopic steering column
  • Power windows featuring one-touch up and down with resistance reversing to protect against pinched fingers
  • Micro-filter ventilation system with replaceable filters
  • Front LED map lights and rear LED reading lights
  • Front sun visors
  • Front trunk and rear cargo area with keyless open
  • 12 V power outlet
  • Automatic climate control with dual zone temperature settings, air distribution controls and recirculation
  • Glove compartment
  • Wi-Fi ready
  • Dual front USB ports for media and power

Safety

  • Eight airbags: head, knee and pelvis airbags in the front plus two side curtain airbags
  • Driver and front passenger seat sensors
  • Driver seat position sensor
  • Three point driver and front passenger safety belts with retractor pretensioners and secondary lap anchor pretensioners and load limiters
  • Three point second row safety belts for all three seats
  • Acoustic front row safety belt warning
  • Rollover crash sensor
  • Crash sensor for high voltage disconnect
  • Three second row LATCH attachments for child seat installations (accommodates three child seats simultaneously: two with LATCH and one with top tether and belt)
  • Rear door child safety locks
  • Interior, manual release mechanism for all doors, front trunk, and rear cargo area
  • Anti-theft alarm and immobilizer system
  • Horn. Beep. Beep.

Get free daily email updates!

Follow us!

Wednesday, 24 April 2013

UI scientists create powerful microbatteries

UI …. i.e. University of Illinois…

IonCrossing_in_new_battery Developed by researchers at the University of Illinois at Urbana-Champaign, the new microbatteries out-power even the best supercapacitors and could drive new applications in radio communications and compact electronics.

The most powerful batteries on the planet are only a few millimeters in size, yet they pack such a punch that a driver could use a cellphone powered by these batteries to jump-start a dead car battery – and then recharge the phone in the blink of an eye.

“This is a whole new way to think about batteries. A battery can deliver far more power than anybody ever thought. In recent decades, electronics have gotten small. The thinking parts of computers have gotten small. And the battery has lagged far behind. This is a microtechnology that could change all of that. Now the power source is as high-performance as the rest of it,” said William P. King, bliss professor of mechanical science and engineering.

“The picture illustrates a high power battery technology from the University of Illinois.  Ions flow between three-dimensional micro-electrodes in a lithium ion battery.”

With currently available power sources, users have had to choose between power and energy. For applications that need a lot of power, like broadcasting a radio signal over a long distance, capacitors can release energy very quickly but can only store a small amount. For applications that need a lot of energy, like playing a radio for a long time, fuel cells and batteries can hold a lot of energy but release it or recharge slowly.

The new microbatteries offer both power and energy, and by tweaking the structure a bit, the researchers can tune them over a wide range on the power-versus-energy scale.

The batteries owe their high performance to their internal three-dimensional microstructure. Batteries have two key components: the anode (minus side) and cathode (plus side). Building on a novel fast-charging cathode design by materials science and engineering professor Paul Braun’s group, King and Pikul developed a matching anode and then developed a new way to integrate the two components at the microscale to make a complete battery with superior performance.

The graphic illustrates a high power battery technology from the University of Illinois.  Ions flow between three-dimensional micro-electrodes in a lithium ion battery.

With so much power, the batteries could enable sensors or radio signals that broadcast 30 times farther, or devices 30 times smaller. The batteries are rechargeable and can charge 1000 times faster than competing technologies – imagine juicing up a credit-card-thin phone in less than a second. In addition to consumer electronics, medical devices, lasers, sensors and other applications could see leaps forward in technology with such power sources available.

“Any kind of electronic device is limited by the size of the battery – until now. Consider personal medical devices and implants, where the battery is an enormous brick, and it’s connected to itty-bitty electronics and tiny wires. Now the battery is also tiny,” explained Mr. King.

Now, the researchers are working on integrating their batteries with other electronics components, as well as manufacturability at low cost.

“To dare is to lose one's footing momentarily. To not dare is to lose oneself.”

Get free daily email updates!

Follow us!

Sunday, 24 February 2013

6 Ways to Improve Chip Yield Even Before the Project Starts

13782587-bulb-on-computer-chip--technology-concept Early on in Chip projects, yield is not taken very seriously. The common thinking goes –  anyhow there isn’t much to do as this early point of time. However, there are actually several things you can do even before the Chip design starts, which will translate to clear savings.

1- Know your Yield

Yield has a great deal of impact only if production volume is high. If you plan to manufacture only a few tens of thousands of components, perhaps yield is not the most important topic in your project’s plan.

Yield can be roughly calculated or estimated before the project has even started. Yet, if you have calculate a yield target of 95% there is no reason to invest money and efforts to try improving the yield from (the calculated) 95% to 99% because that would not be possible.  Therefore, it is important that you have calculated your yield and set that as a goal.

2- Consider Foundry Applicability

Semiconductor foundries are not taking any yield losses. It is not the fab responsibility whether your yield is high or low because they sell wafers and not dies. Therefore you should select the foundry the suits best to your Chip domain.

If you chip requires small node geometries go to GLOBALFOUNDRIES, TSMC etc. If you chip needs excellent RF performance go to: IBM, TowerJazz etc. The foundry can help you calculating the wafer yield based on their own process technology. If you can provide them with die size, number of layers, process node and options, they should be able to provide you with a very accurate yield figures for your project.

3- Match Design Team Experience to Your Project

If you have decided to outsource the frond-end and physical design activities to an external vendor, the main yield-related risk here is experience. If the design team does not have the relevant experience that matches your chip project (for instance: RF, High Voltage) you are really wasting your time. Don’t hire analog designer without high voltage experience if you need to design a 120V chip.

4- Select Silicon Proven IPs

More and more companies are shopping for Semiconductor IPs to help reduce time to market and minimize engineering cost. There are many IP vendors with high quality products and some with lower quality. The keyword here is risk minimization. You really want to make sure the IP blocks you are about to purchase and integrate into your chip are bug free and have been silicon proven and qualified for your process. Ask for test results and references.

5- Follow Package Design Rules

For simple QFN packages there are no real concerns besides following the assembly house design rules. However complex packages can reduce yield dramatically. If your chip uses a package that consists of a multilayer substrate with high speed signals, this substrate should be considered as part of the silicon die. Improper routing of high speed signals, for example, will make the substrate performance very marginal and thus result in failures during final test.

6 – Say No to Tight Test Limits, Say Yes to Better Hardware

The only place to measure yield is at the testing phase. And this is done by the ATE.

Great ASIC engineers often try to over-engineer the chip design and as a by-product also tighten up the test result criteria. These limits will have direct impact on your profit. Every device that fails to meet limits during the screening process will be scraped. Therefore, don’t create the perfect test specification. Make one that meets your system requirements.

Loadboards, sockets and probecards have different quality levels and therefore different cost. But since these are the actual physical interface between your chip and the tester, you want to make sure they have the right quality and durably to allow solid connectivity to the tester during the test period. Otherwise, lower quality hardware will shave off your yield figures. Sockets for example, have limited number of insertions; you therefore should buy a socket that meets your chip production volume. Bottom-line — don’t compromise on the quality of the hardware interfacing your chip.

There is so much more to write on this topic, we promise to write more articles in the future. Stay tuned.

Get free daily email updates!

Follow us!

Monday, 16 July 2012

MIT engineers Innovates an “Intelligent co-pilot” for cars

IT engineers have developed a semi-autonomous vehicle safety system that takes over if the driver does something stupid.

The system uses an onboard camera and laser rangefinder to identify hazards. An algorithm analyzes the data and identifies safe zones — avoiding, for example, barrels in a field, or other cars on a roadway.
The driver's in charge - until the system recognizes that the vehicle's about to exit a safe zone and takes over.

"The real innovation is enabling the car to share [control] with you," says PhD student Sterling Anderson. "If you want to drive, it’ll just make sure you don’t hit anything."

The team's approach is based on identifying safe zones, or 'homotopies', rather than specific paths of travel. Instead of mapping out individual paths along a roadway, the researchers divide a vehicle’s environment into triangles, with certain 'constrained' triangle edges representing an obstacle or a lane’s boundary.

If a driver looks like crossing a constrained edge — for instance, if he’s fallen asleep at the wheel and is about to run into a barrier  — the system takes over, steering the car back into the safe zone.

The system works well in tests, say its designers: in more than 1,200 trials of the system, with , there have only been a few collisions, mostly when glitches in the vehicle’s camera failed to identify an obstacle.

One possible problem with the system, though, is that it could give drivers a false sense of confidence on their own abilities.

Using it, says Anderson, "You’d say, ‘Hey, I pulled this off,’ and you wouldn’t know that the car is changing things behind the scenes to make sure the vehicle remains safe, even if your inputs are not."

He and Iagnemma are now exploring ways to tailor the system to various levels of driving experience.

They're also hoping to pare down the system to identify obstacles using a single cellphone.

"You could stick your cellphone on the dashboard, and it would use the camera, accelerometers and gyro to provide the feedback needed by the system," says Anderson.

"I think we'll find better ways of doing it that will be simpler, cheaper and allow more users access to the technology."

Wednesday, 4 July 2012

The Story Of Electronics

Here is a great video - The Story of Electronics by The Story of Stuff Project. It outlines how electronic manufacturers are "Designing for the dump".
As consumers we must pressure these companies to take ownership of electronics from cradle to grave, and change from "dump designers" to sustainable designers.
This is where Design For Sustainability Software (DFS) can be integral to changing the disposable mindset of these organizations.

Designed for the Dump
Many electronic products are designed for the dump. They have short-life spans, or become obsolete quickly. They are often expensive to repair, and sometimes it’s difficult to find parts. Many consumer-grade electronics products are cheaper to replace than to fix even if you can find someone to fix it.  Because they are designed using  many hazardous compounds, recycling these products involves processing toxic material streams, which is never 100% safe.

Some of the problematic toxic materials that must be removed before recycling are lead in cathode ray tube (CRT) TV monitors and mercury lamps in LCD screens, as well as PVC, flame retardants, and other toxic additives in plastic components.

Designed to Last
Before electronics companies can make the claim that they are green and sustainable, they must shift away from producing “disposable” products designed with a limited lifespan (planned obsolescence) and towards products that are designed to last. Instead of purchasing products with high failure rates and the need for frequent replacement, we should be able to choose long-living, upgradeable goods that have long warranties and can be efficiently repaired and recycled.